A Gentle Introduction to Machine Learning in Natural Language Processing using R

 ESSLLI '2013

 ESSLLI '2013
 Düsseldorf, Germany

http://ufal.mff.cuni.cz/mlnlpr13

Barbora Hladká hladka@ufal.mff.cuni.cz

Martin Holub holub@ufal.mff.cuni.cz

Charles University in Prague, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics

Day 2

- 2.1 A few necessary R functions
- 2.2 Mathematics
- 2.3 Decision tree learning Theory
- 2.4 Decision tree learning Practice
- Summary

Block 2.1

A few necessary R functions

We already know from yesterday

- <- ... assignment operator
- + - * / () ... basic arithmetics
is applicable also to vectors, BUT works with vector elemets!
- c () ... combines its arguments to form a vector
- $\operatorname{str}()$... structure of an object
- length() ... length of a vector
- $1: 15 \ldots$ vector containing the given sequence of integers
- $x[5: 7]$; $y[c(1,2,10)] \ldots$ selecting elements from a vector
- sample(x) ... random permutation of a vector
- help(), ? ... built-in help

Working with external files

- getwd () ... to print the working directory
- setwd() ... to set your working directory
- list.files()... to list existing files in your working directory
- read.table()... to load data from a .csv file - This function is the principal means of reading tabular data into R.

Your objects in the R environment

- ls()... to get the list of your existing objects
- rm() ... to delete an object
- $r m(l i s t=1 s()) \ldots$ to delete all your existing objects

```
> ls()
```

[1] "c"
[6] "k"
$>$ rm(list=ls())
$>\operatorname{ls}()$
character (0)

Exiting R

```
> q()
```


Vector types

Vector elements can be numerical, logical, or string values You cannot combine different types within a vector

```
> x <- c(3,6,5,3,2,7,5)
> X
[1] 3 6 5 3 2 7 5
> y <- 3:9
y
[1] 345678 9
> x == y
[1] TRUE FALSE TRUE FALSE FALSE FALSE FALSE
> x < y
[1] FALSE FALSE FALSE TRUE TRUE TRUE TRUE
```


Logical vectors

```
> z <- as.logical(c(T,T,F))
> z
[1] TRUE TRUE FALSE
> str(z)
    logi [1:3] TRUE TRUE FALSE
> sum(z)
[1] 2
>
```

Note: When you calculate the sum of a logical vector, logical true values are regarded as one, false values as zero.

```
# Does y have any elements bigger than x?
> sum(y > x)
[1] 4
```

>

Factors

In R, "vectors" of categorical values are called factors.

```
examples <- read.table("wsd.development.csv", header=T)
> str(examples$SENSE)
    Factor w/ 6 levels "cord","division",..: 1 1 1 1 1 1 1 1 ...
> levels(examples$SENSE)
[1] "cord" "division" "formation" "phone" "product"
```

$>$

A factor stores both values and possible levels of a categorial variable. Levels are "names" of categorial values.

Examples: creating factors

```
> word.forms <-
    as.factor(c("lines", "line", "line", "line", "lines", "lines"))
> str(word.forms)
    Factor w/ 2 levels "line","lines": 2 1 1 1 2 2
> table(word.forms)
word.forms
    line lines
        3 3
>
> people <- factor( c(1,1,1,0,1,0,0,0,1,0,1,1,1,1),
        labels=c("male", "female"))
> table(people)
people
        male female
        5 9
```


Looking at data in a data frame - head()

> head (examples)															
	SENSE A1	A2 A3	A4	A5	A6	A7		A8	A9	A10	A11	A12	A13	A14	A1
1	cord 1	00	0	0	0	0		0	0	0	0	safety	special	install	insid
2	cord 0	00	0	0	0	0		0	0	0	0	wash	a	and	
3	cord 0	00	0	0	0	0		0	0	0	0	moor	steel	by	
4	cord 0	00	0	0	0	0		0	0	0	0	frozen	the	thaw	a
5	cord 0	00	0	0	0	0		0	0	0	0	dock	a	throw	t
6	cord 0	00	0	0	0	0		0	0	0	0	green	the	come	a
	A17 A18	A19													
1	IN DT	lines		do											
2	X	line	con	j_an											
3	, DT	lines		age											
	IN DT	lines		do											
	TO DT	line		do											
	IN DT	line		nsu											
>															

Looking at data in a data frame - table()

> str (examples\$SENSE)
Factor w/ 6 levels "cord","division",..: 11111111 ...
> table (examples\$SENSE)

cord	division	formation	phone	product	text
336	322	296	380	1838	352

Looking at data in a data frame - table()

> str (examples\$SENSE)
Factor w/ 6 levels "cord","division",..: 11111111 ...
> table (examples\$SENSE)

cord	division	formation	phone	product	text
336	322	296	380	1838	352

2-dimensional table()
> table(examples\$SENSE, examples\$A19)

	line	lined	lines
cord	226	0	110
division	250	0	72
formation	189	2	105
phone	201	0	179
product	1319	0	519
text	207	0	145

Mathematicians call it contingency table (first used by K. Pearson, 1904).

Getting probability of factor levels using table()

```
> table(examples$SENSE)/sum(table(examples$SENSE))
    cord division formation phone product text
0.09534620 0.09137344 0.08399546 0.10783201 0.52156640 0.09988649
```


Getting probability of factor levels using table()

```
> table(examples$SENSE)/sum(table(examples$SENSE))
```

```
    cord division formation phone product text
```

 cord division formation phone product text
 0.09534620 0.09137344 0.08399546 0.10783201 0.52156640 0.09988649

```
0.09534620 0.09137344 0.08399546 0.10783201 0.52156640 0.09988649
```

The same using nrow(), and with rounded numbers

$>$ round(table(examples\$SENSE)/nrow(examples), 3)					
cord					
0.095	0.091	0.084	0.108	0.522	0.100

Getting subsets from data frames

Getting a subset of observations

```
> examples.only_lines <- subset(examples, A19=='lines')
> str(examples.only_lines)
'data.frame': 1130 obs. of 21 variables:
    $ SENSE: Factor w/ 6 levels "cord","division",..: 1 1 1 1 1 1 1 ...
    $ A1 : int 1 0 0 0 1 1 0 0 0 0 ...
    $ A2 : int 0 0 0 0 0 0 0 0 0 0 ...
    $ A3 : int 0 0 0 0 0 0 0 0 0 0 ...
```


Getting subsets from data frames

Getting a subset of observations

```
> examples.only_lines <- subset(examples, A19=='lines')
> str(examples.only_lines)
'data.frame': 1130 obs. of 21 variables:
    $ SENSE: Factor w/ 6 levels "cord","division",..: 1 1 1 1 1 1 1 ...
    $ A1 : int 1 0 0 0 1 1 0 0 0 0 ...
    $ A2 : int 0 0 0 0 0 0 0 0 0 0 ...
    $ A3 : int 0 0 0 0 0 0 0 0 0 0 ...
```


Getting selected variables only

> examples[1:20, c('SENSE', 'A4', 'A19')]
$>$

- Will retrieve first 20 observations and select only the 3 given variables.

Block 2.2 Mathematics for machine learning

Machine learning requires some mathematical knowledge, especially

- statistics
- probability theory
- information theory
- algebra (vector spaces)

Why statistics and probability theory?

Motivation

- In machine learning, models come from data and provide insights for understanding data or making prediction.
- A good model is often a model which not only fits the data but gives good predictions, even if it is not interpretable.

Statistics

- is the science of the collection, organization, and interpretation of data
- uses the probability theory

Two purposes of statistical analysis

Statistics is the study of the collection, organization, analysis, and interpretation of data. It deals with all aspects of this, including the planning of data collection in terms of the design of surveys and experiments.

Description

- describing what was observed in sample data numerically or graphically

Inference

- drawing inferences about the population represented by the sample data

Random variables

A random variable (or sometimes stochastic variable) is, roughly speaking, a variable whose value results from a measurement/observation on some type of random process. Intuitively, a random variable is a numerical or categorical description of the outcome of a random experiment (or a random event).

Random variables can be classified as either

- discrete
$=$ a random variable that may assume either a finite number of values
or an infinite sequence of values (countably infinite)
- continuous
$=$ a variable that may assume any numerical value in an interval or collection of intervals.

Features as random variables

In machine learning theory we take features as random variables.

Target class is a random variable as well.

Data instance is considered as a vector of random values.

Probability theory - basic terms

Formal definitions

- random experiment
- elementary outcomes ω_{i}
- sample space $\Omega=\bigcup\left\{\omega_{i}\right\}$
- event $A \subseteq \Omega$
- complement of an event $A^{c}=\Omega \backslash A$
- probability of any event is a non-negative value $\mathrm{P}(A) \geq 0$
- total probability of all elementary outcomes is one

$$
\sum_{\omega \in \Omega} \mathrm{P}(\omega)=1
$$

- if two events A, B are mutually exclusive (i.e. $A \cap B=\emptyset$), then $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)$

Basic formulas to calculate probabilities

Generally, probability of an event A is

$$
P(A)=\sum_{\omega \in A} P(\omega)
$$

Probability of a complement event is

$$
\mathrm{P}\left(A^{c}\right)=1-\mathrm{P}(A)
$$

Calculating probability by relative frequency

IF all elementary outcomes have the same probability, THEN probability of an event is given by the proportion of

$$
\frac{\text { number of desired outcomes }}{\text { total number of outcomes possible }}
$$

What is $\mathrm{P}(A$ or $B)$?

$$
\mathrm{P}(A \text { or } B)=\mathrm{P}(A \cup B)
$$

For mutually exclusive events:

$$
\mathrm{P}(A \text { or } B)=\mathrm{P}(A)+\mathrm{P}(B)
$$

otherwise (generally):

$$
\mathrm{P}(A \text { or } B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)
$$

What is $\mathrm{P}(A$ and $B)$?

$$
\mathrm{P}(A, B)=\mathrm{P}(A \text { and } B)=\mathrm{P}(A \cap B)
$$

If events A and B come from two different random processes, $\mathrm{P}(A, B)$ is called joint probability.

Two events A and B are independent of each other if the occurrence of one has no influence on the probability of the other.

For independent events: $P(A$ and $B)=P(A) \cdot P(B)$.
otherwise (generally):

$$
\mathrm{P}(A \text { and } B)=\mathrm{P}(A \mid B) \cdot \mathrm{P}(B)=\mathrm{P}(B \mid A) \cdot \mathrm{P}(A)
$$

Warming exercises

If you want to make sure that you understand well basic probability computing

Rolling two dice, observing the sum. What is likelier?
a) the sum is even
b) the sum is greater than 8
c) the sum is 5 or 7

What is likelier:

a) rolling at least one six in four throws of a single die, OR
b) rolling at least one double six in 24 throws of a pair of dice?

Definition of conditional probability

Conditional probability of the event A given the event B is

$$
\mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}=\frac{\mathrm{P}(A, B)}{\mathrm{P}(B)}
$$

Or, in other words,

$$
\mathrm{P}(A, B)=\mathrm{P}(A \mid B) \mathrm{P}(B)
$$

Statistically independent events

Definition: The random event B is independent of the random event A, if the following holds true at the same time:

$$
\mathrm{P}(B)=\mathrm{P}(B \mid A), \quad \mathrm{P}(B)=\mathrm{P}\left(B \mid A^{c}\right)
$$

An equivalent definition is that B is independent of A if

$$
\mathrm{P}(A) \cdot \mathrm{P}(B)=\mathrm{P}(A \cap B)
$$

Computing conditional probability

Exercise

The probability that it is Friday and that a student is absent is 3%. Since there are 5 school days in a week, the probability that it is Friday is 20%. What is the probability that a student is absent given that today is Friday?

Solution

Random experiment:

At a random moment we observe the day in working week and the fact if a student is absent.

Events:

- A... it is Friday
- B ... a student is absent

Probabilities:

- $\mathrm{P}(A, B)=0.03$
- $\mathrm{P}(A)=0.2$
- $\mathrm{P}(B \mid A)=\mathrm{P}(A, B) / \mathrm{P}(A)=0.15$

Correct answer: The probability that a student is absent given that today is Friday is 15%.

Example - probability of target class

Look at the wsd.development data. There are 3524 examples in total. Each example can be considered as a random observation, i.e. as an outcome of a random experiment.

Occurrence of a particular value of the target class can be taken as an event, similarly for other attributes.

Assume that

- event A stands for SENSE = 'PRODUCT'
- event B stands for A19 = 'lines'

Then unconditioned probabilities $\operatorname{Pr}(A)$ and $\operatorname{Pr}(B)$ are

$$
\begin{aligned}
& \operatorname{Pr}(A)=\frac{\text { number of observations with SENSE='PRODUCT' }}{\text { number of all observations }}=\frac{1838}{3524}=52.16 \% \\
& \operatorname{Pr}(B)=\frac{\text { number of observations with A19='lines' }}{\text { number of all observations }}=\frac{1130}{3524}=32.07 \%
\end{aligned}
$$

Example - conditional probability of target class

To compute conditional probability $\operatorname{Pr}(A \mid B)$ you need to know joint probability $\operatorname{Pr}(A, B)$
$\operatorname{Pr}(A, B)=\frac{\text { number of observations with SENSE='PRODUCT' and } \mathrm{A} 19=\text { ' } 1 \text { lines ' }}{\text { number of all observations }}$
$\operatorname{Pr}(A, B)=\frac{519}{3524}=14.73 \%$
$\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A, B)}{\operatorname{Pr}(B)}=\frac{14.73 \%}{32.07 \%}=45.93 \%$
Or, equivalently
$\operatorname{Pr}(A \mid B)=\frac{\text { number of observations with } \operatorname{SENSE}=\text { 'PRODUCT' and A19='lines' }}{\text { number of observations with A19='lines' }}$
$\operatorname{Pr}(A \mid B)=\frac{519}{1130}=45.93 \%$

Bayes rule

Because of the symmetry $\mathrm{P}(A, B)=\mathrm{P}(B, A)$, we have

$$
\mathrm{P}(A, B)=\mathrm{P}(A \mid B) \mathrm{P}(B)=\mathrm{P}(B \mid A) \mathrm{P}(A)=\mathrm{P}(B, A)
$$

And thus

$$
\mathrm{P}(B \mid A)=\frac{\mathrm{P}(A \mid B) \mathrm{P}(B)}{\mathrm{P}(A)}
$$

Using Bayes rule

Exercise

One coin in a collection of 65 has two heads. The rest are fair. If a coin, chosen at random from the lot and then tossed, turns up heads 6 times in a row, what is the probability that it is the two-headed coin?

Solution

Random experiment and considered events

We observe if a chosen coin is two-headed (event A), and if all 6 random tosses result in heads (event B). So, we want to know $\mathrm{P}(A \mid B)$.

Probabilities

- $\mathrm{P}(A \mid B)$ is the probability that we are looking for $=\mathrm{P}(B \mid A) \mathrm{P}(A) / \mathrm{P}(B)$ (application of Bayes rule)
- $\mathrm{P}(B \mid A)=1$ (two-headed coin cannot give any other result)
- $\mathrm{P}(A)=1 / 65 ; \mathrm{P}\left(A^{c}\right)=64 / 65$
- $\mathrm{P}(B)=\mathrm{P}(B, A)+\mathrm{P}\left(B, A^{c}\right)$ (two mutually exclusive events) $=\mathrm{P}(A) \mathrm{P}(B \mid A)+\mathrm{P}\left(A^{c}\right) \mathrm{P}\left(B \mid A^{c}\right)$ (by definition)
- $\mathrm{P}\left(B \mid A^{c}\right)=1 / 2^{6}=1 / 64$ (six independent events)
- $\mathrm{P}(B)=1 / 65+(64 / 65)(1 / 64)=2 / 65$
- $\mathrm{P}(A \mid B)=(1 / 65) /(2 / 65)=50 \%$ ($=$ the correct answer)

Homework 2.1

(1) Practise using R!

Go thoroughly through all examples in our presentation and try it on your own

- using your computer, your hands, and your brain :-)
(2) Study the Homework 1.1 Solution.

Understand it. Especially the conditional probability computing.

Block 2.3 Decision tree learning - Theory

Machine learning process - five basic steps
(1) Formulating the task
(2) Getting classified data, i.e. training and test data
(3) Learning from training data: Decision tree learning
(4) Testing the learned knowledge on test data
(5) Evaluation

Decision tree for the task of WDS of line

Example

Using the decision tree for classification

Example

Assign the correct sense of line in the sentence "Draw a line between the points P and Q ."

First, get twenty feature values from the sentence

A_{1}	$\mathrm{~A}_{2}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{4}$	$\mathrm{~A}_{5}$	$\mathrm{~A}_{6}$	$\mathrm{~A}_{7}$	$\mathrm{~A}_{8}$	$\mathrm{~A}_{9}$	$\mathrm{~A}_{10}$	$\mathrm{~A}_{11}$
0	0	0	0	0	0	0	0	1	0	0

A_{12}	$\mathrm{~A}_{13}$	$\mathrm{~A}_{14}$	$\mathrm{~A}_{15}$	$\mathrm{~A}_{16}$	$\mathrm{~A}_{17}$	$\mathrm{~A}_{18}$	$\mathrm{~A}_{19}$	$\mathrm{~A}_{20}$
a	draw	X	between	DT	IN	DT	line	dobj

Using the decision tree for classification

Second, get the classification of the instance using the decision tree

Using the decision tree for classification

Example

Assign the correct sense of line in the sentence "Draw a line that passes through the points P and Q ."

First, get twenty feature values from the sentence

A_{1}	$\mathrm{~A}_{2}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{4}$	$\mathrm{~A}_{5}$	$\mathrm{~A}_{6}$	$\mathrm{~A}_{7}$	$\mathrm{~A}_{8}$	$\mathrm{~A}_{9}$	$\mathrm{~A}_{10}$	$\mathrm{~A}_{11}$
0	0	0	0	0	0	0	0	0	0	0

A_{12}	$\mathrm{~A}_{13}$	$\mathrm{~A}_{14}$	$\mathrm{~A}_{15}$	$\mathrm{~A}_{16}$	$\mathrm{~A}_{17}$	$\mathrm{~A}_{18}$	$\mathrm{~A}_{19}$	$\mathrm{~A}_{20}$
a	draw	X	that	DT	WDT	VB	line	dobj

Using the decision tree for classification

Second, get the classification of the instance using the decision tree

Building a decision tree from training data

Tree structure description

- Nodes
- Root node
- Internal nodes
- Leaf nodes with TARGET CLASS VALUES
- Decisions
- Binary questions on a single feature, i.e. each internal node has two child nodes

Building a decision tree from training data

Start building a decision tree

- Step 1 Create a root node.
- Step 2 Select decision d and add two child nodes to an existing node.

Building a decision tree from training data

How to select decision d ?
Associate the root node with the training set t.

Example

1. Assume decision if $\mathrm{A}_{4}=T R U E$.
2. Split the training set t according to this decision into two subsets - "pink"

SENSE	\ldots	A4	\ldots
FORMATION		TRUE	
t	FORMATION		FALSE
		TRUE	
		TRUE	
		FALSE	
\ldots	\ldots	\ldots	

Building a decision tree from training data

3. Add two child nodes, "pink" and "blue", to the root. Associate each of them with the corresponding subset t_{L}, t_{R}, resp.

SENSE					\ldots	A4	\ldots
t_{R}	FORMATION		FALSE				
	DIVISION		FALSE				
	\ldots	\ldots	\ldots				

Building a decision tree from training data

How to select decision d ?
Working with more than one feature, more than one decision can be formulated.

Which decision is the best?
Focus on a distribution of target class values in associated subsets of training examples.

Building a decision tree from training data

Example

- Assume a set of 120 training examples from the task of WSD.
- Some decision splits them into two sets (1) and (2) with the following target class value distribution:

	CORD	DIVISION	FORMATION	PHONE	PRODUCT	TEXT	
(1)	0	0	0	120	0	0	"pure"
(2)	20	20	20	20	20	20	"impure"

A "pure" training subset contains mostly examples of a single target class value.

Building a decision tree from training data

Which decision is the best?

Decision that splits training data into subsets as pure as possible.

Building a decision tree from training data

Decision tree learning algorithm - a very basic formulation

- Step 1 Create a root node.

- Step 2 Select decision d and add two child nodes to an existing node.

- Step 3 Split the training examples associated with the parent node t according to d into t_{L} and t_{R}.
- Step 4 Repeat recursively steps (2) and (3) for both child nodes and their associated training subsets.
- Step 5 Stop recursion for a node if all associated training examples have the same target class value. Create a leaf node with this value.

Block 2.4 Decision tree learning - Practice

- Task

Assign the correct sense to the target word "line" ("lines", "lined")

- Objects

Sentences containing the target word ("line", "lines", "lined")

- Target class SENSE $=\{$ CORD, DIVISION, FORMATION, PHONE, PRODUCT, TEXT $\}$
- Features

Binary features $A_{1}, A_{2}, \ldots, A_{11}$

Block 2.4
 Decision tree learning - Practice

Subtasks

(1) Build a classifier trained on binary feature A4.
(2) Build a classifier trained on eleven binary features A1, A2, ... A11.

Getting classified data

First, get examples into \mathbf{R}

```
## Read the file with examples
> examples <- read.table("wsd.development.csv", header=T)
## Review the data
> str(examples)
'data.frame': }3524\mathrm{ obs. of 21 variables:
    $ SENSE: Factor w/ 6 levels "cord","division",..: 1 1 1 1 ...
    $ A1 : logi TRUE FALSE FALSE FALSE FALSE FALSE ...
    $ A2 : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
    $ A8 : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
    $ A12 : Factor w/ 920 levels ".",",","،`","-",..: 667 862 512
    $ A19 : Factor w/ 3 levels "line","lined",..: 3 1 3 3 1 ...
    $ A20 : Factor w/ 80 levels "advcl","agent",..: 12 6 2 12
```


Splitting classified data into training and test data

Second, split them into the training and test sets

```
## Get the number of input examples
> num.examples <- nrow(examples)
## Set the number of training examples = 90% of examples
> num.train <- round(0.9 * num.examples)
## Set the number of test examples = 10% of examples
> num.test <- num.examples - num.train
## Check the numbers
> num.examples
[1] 3524
> num.train
[1] 3172
> num.test
[1] }35
```


Splitting classified data into training and test data

\#\# Randomly split examples into training and test data
\#\# Use set.seed() to be able to reconstruct the experiment
\#\# with the SAME training and test sets
> sample(10)
[1] $\begin{array}{lllllllllll}8 & 7 & 10 & 3 & 1 & 4 & 2 & 6 & 5 & 9\end{array}$
> sample(10)
[1] $\begin{array}{lllllllllll}9 & 8 & 5 & 10 & 7 & 6 & 3 & 2 & 4 & 1\end{array}$
> sample(10)
$\begin{array}{cllllllllll}{[1]} & 7 & 4 & 6 & 10 & 1 & 9 & 5 & 2 & 3 & 8\end{array}$
> sample(10)
[1] $\begin{array}{lllllllllll}9 & 10 & 4 & 5 & 1 & 6 & 8 & 2 & 3 & 7\end{array}$
> set.seed(123)
> sample(10)
[1] $\begin{array}{lllllllllll}3 & 8 & 4 & 7 & 6 & 1 & 10 & 9 & 2 & 5\end{array}$
> set. seed (123)
> sample(10)
[1] $\begin{array}{lllllllllll}3 & 8 & 4 & 7 & 6 & 1 & 10 & 9 & 2 & 5\end{array}$

Splitting classified data into training and test data

```
## Randomly split examples into training and test data
## Use set.seed() to be able to reconstruct the experiment
## with the SAME training and test sets
> set.seed(123)
> s <- sample(num.examples)
```


Splitting classified data into training and test data


```
### Get the training set
## First, generate indices of training examples ("blue" ones)
> indices.train <- s[1:num.train]
## Second, get the training examples
> train <- examples[indices.train,]
### Get the test set (see "pink" indeces)
> indices.test <- s[(num.train+1):num.examples]
> test <- examples[indices.test,]
## Check the results
> str(train); str(test)
```


Learning from training data

Load the package rpart

```
## Use the "rpart" package
## ! Run install.packages("rpart"), ***if not installed***.
# Check if the package is installed
> library()
## Load the package
> library(rpart)
# to get help info
> help(rpart)
```


Learning from training data

Subtask 1 Build a dependency tree classifier using only one feature, namely A4

Train decision tree model M1

```
## Run the learning process using function "rpart"
M1 <- rpart(SENSE ~ A4, data=train, method="class")
```


Learning from training data

rpart documentation

rpart(formula, data= , method= , ...)

- formula is $\mathrm{y} \sim$ model where
- y is a target class
- ~ stands for 'is modeled as'
- model is a combination of features (model by statisticians).
- data specifies the training set,
- method="class" for classification,

Learning from training data

Display the trained tree

```
## Draw tree on screen
> plot(M1); text(M1)
## Draw tree to a file
> png("../img/dtM1.png", width=4.8, height=4.8,units="in",
                        res=600, bg="transparent")
> plot(M1, margin=0.05)
> text(M1)
> title(main = "Decision tree trained on feature A4")
> dev.off()
```


Trained decision tree

WSD task: decision tree trained on feature A4

Trained decision tree

Display the model M1

```
## Display the model
> M1
n= 3172
node), split, n, loss, yval, (yprob)
    * denotes terminal node
1) root 3172 1526 product (0.096 0.093 0.084 0.11 0.52 0.099)
    2) A4>=0.5 150 8 phone (0 0 0 0.95 0 0.053) *
    3) A4< 0.5 3022 1376 product (0.1 0.097 0.089 0.068 0.54 0.1)
```


Trained decision tree

How to read the model

```
n= 3172
node), split, n, loss, yval, (yprob)
    * denotes terminal node
```

$\mathrm{n}=3172$ The number of training examples.
node) A node number.
split Decision.
$\mathrm{n} \quad$ The number of training examples associated to the given node.
loss The number of examples incorrectly classified with the majority class value yval.
yval The default classification for the node by the majority class value.
yprob The distribution of class values at the associated training subset.

Testing trained decision tree on test data

Prediction on test data

```
### Test the trained model M1 on test examples
## Use the function predict()
> ?predict()
predict package:stats R Documentation
Model Predictions
Description:
    'predict' is a generic function for predictions
    the results of various model ...
> P11 <- predict(M1, test, type="class")
```


Evaluation

Comparing the predicted values with the true senses

> str (P11)							
Factor w/ 6 levels "cord", "division",..: 5555555555							
P11							
cord division formation phone product text							
cord	0	0	0	0	33	0	
division	0	0	0	0	28	0	
formation	0	0	0	0	28	0	
phone	0	0	0	12	21	0	
product	0	0	0	0	192	0	
text	0	0	0	1	37	0	

57.95 \% of test examples are predicted correctly

> round(100*sum(P11 == test\$SENSE)/num.test,2)
[1] 57.95
ESSLLI '2013

Testing trained decision tree on train data

Prediction on training data

```
### Test the trained model M1 on training examples.
> P12 <- predict(M1, train, type="class")
```


Evaluation

Comparing the predicted values with the true senses

56.37 \% of training examples are predicted correctly
> message(round(100*sum(P12 == train\$SENSE)/num.train, 2), "\%")
[1] 56.37

Learning from training data

Subtask 2 Build a dependency tree classifier using all binary features, namely A1, ..., A11

Train decision tree model M2

```
## Run the learning process using function "rpart"
M2 <- rpart(SENSE ~ A1+A2+A3+A4+A5+A6+A7+A8+A9+A10+A11,
    data=train, method="class")
```


Learning from training data

Display the trained tree

```
## Draw tree on screen
> plot(M2); text(M2)
## Draw tree to a file
> png("../img/dtM2.png", width=4.8, height=4.8,units="in",
                        res=600, bg="transparent")
> plot(M2, margin=0.05)
> text(M2)
> title(main = "Decision tree trained on all binary features")
> dev.off()
```


Trained decision tree

WSD task: decision tree trained on A1,...,A11

Trained decision tree

Display the trained model M2

```
> \#\# Display the model
> M2
\(\mathrm{n}=3172\)
node), split, \(n\), loss, yval, (yprob)
    * denotes terminal node
    1) root 31721526 product ( 0.0960 .0930 .0840 .110 .520 .099\()\)
        2) \(\mathrm{A} 4>=0.5150 \quad 8\) phone ( 0000.9500 .053 ) *
        3) \(\mathrm{A} 4<0.530221376\) product ( 0.10 .0970 .0890 .0680 .540 .1 )
            6) \(\mathrm{A} 2>=0.588 \quad 0\) division ( 010000\()\) *
            7) \(\mathrm{A} 2<0.529341288\) product ( 0.10 .070 .0910 .070 .560 .1 )
        14) A3> \(=0.579 \quad 5\) formation ( 0.06300 .94000\()\) *
        15) \(\mathrm{A} 3<0.528551209\) product ( \(0.10 .0720 .068 \ldots\)...)
            30) A9>=0.5 663 division ( \(0.0150 .950 \ldots\)...) *
            31) A9< 0.527891144 product ( \(0.110 .0510 .07 \ldots\). . *
```


Testing trained decision tree on test data

Prediction on test data

```
### Test the trained model on test examples.
> P21 <- predict(M2, test, type="class")
```


Evaluation

Comparing the predicted values with the true senses

$\begin{gathered} >\text { print(table(test\$SENSE, P21)) } \\ \text { P21 } \end{gathered}$						
	cord	division	formation	phone	product	text
cord	0	0	0	0	33	0
division	0	15	0	0	13	0
formation	0	0	6	0	22	0
phone	0	0	0	12	21	0
product	0	1	0	0	191	0
text	0	0	1	1	36	0

63.64 \% of test examples are predicted correctly

> round(100*sum(P21 == test\$SENSE)/num.test,2)
[1] 63.64

Testing trained decision tree on trainig data

Prediction on training data

```
### Test the trained model on training examples.
> P22 <- predict(M2, train, type="class")
```


Evaluation

Comparing the predicted values with the true senses

63.43 \% of training examples are predicted correctly

```
> round(100*sum(P22 == train$SENSE)/num.train,2)
[1] 63.64
```


Run the script in R

The R script DT-WSD.R

- builds the classifier M1 using the feature A4, classifies training and test data using M1 and computes the performance of M1.
- builds the classifier M 2 using binary features $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{11}$, classifies training and test data using M2 and computes the performance of M2.

Download the script from the course page and run in R

```
> source("DT-WSD.R")
```


Homework 2.2

Generate the same training and test sets as we did in practice above. Assume the following feature groups:
(1) $\mathrm{A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}, \mathrm{~A}_{9}$
(2) $\mathrm{A}_{1}, \mathrm{~A}_{6}, \mathrm{~A}_{7}$
(3) $\mathrm{A}_{1}, \mathrm{~A}_{11}$

For each of them, build a decision tree classifier and list its percentage of correctly classified training and test examples.

Summary of Day 2

Theory

- Decision tree structure: nodes, decisions
- A basic formulation of decision tree learning algorithm

Summary of Day 2

Practice

We built two decision tree classifiers (M1, M2) on two different sets of features and we tested them on both training and test sets.

features used	trained model	data set	performance
A_{4}	M 1		
		train	57.37
		test	57.95
$\mathrm{~A}_{1}, \ldots, \mathrm{~A}_{11}$	M 2		
		train	63.43
		test	63.64

!!! You know how to build a decision tree classifier from training examples in R. Performance is not important right now. !!!

