A Gentle Introduction to Machine Learning in Natural Language Processing using R

ESSLLI '2013 Düsseldorf, Germany

http://ufal.mff.cuni.cz/mlnlpr13

Barbora Hladká hladka@ufal.mff.cuni.cz Martin Holub holub@ufal.mff.cuni.cz

Charles University in Prague, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics

- 2.1 A few necessary R functions
- 2.2 Mathematics
- 2.3 Decision tree learning Theory
- 2.4 Decision tree learning Practice
- Summary

We already know from yesterday

- <- ... assignment operator
- + * / () ... basic arithmetics is applicable also to vectors, BUT works with vector elemets!
- c() ... combines its arguments to form a vector
- str() ... structure of an object
- length() ... length of a vector
- 1:15 ... vector containing the given sequence of integers
- x[5:7]; y[c(1,2,10)] ... selecting elements from a vector
- sample(x) ... random permutation of a vector
- help(), ? ... built-in help

- getwd() ... to print the working directory
- setwd() ... to set your working directory
- list.files() ... to list existing files in your working directory
- read.table() ... to load data from a .csv file
 - This function is the principal means of reading tabular data into R.

Your objects in the R environment

- ls() ... to get the list of your existing objects
- rm() ... to delete an object
- rm(list=ls()) ... to delete all your existing objects

> ls()				
[1] "c"	"data"	"g"	"i"	"index"
[6] "k"	"m"	"n"	"nn"	"prediction
<pre>> rm(list=ls())</pre>				
> ls()				
character(0)				
>				

Exiting R

> q()

Vector elements can be numerical, logical, or string values You cannot combine different types within a vector

```
> x <- c(3,6,5,3,2,7,5)
 х
[1] 3 6 5 3 2 7 5
> y <- 3:9
>
 У
[1] 3 4 5 6 7 8 9
> x == y
[1] TRUE FALSE TRUE FALSE FALSE FALSE FALSE
> x < y
[1] FALSE FALSE FALSE TRUE
                            TRUE
                                   TRUE
                                        TRUE
>
```

Logical vectors

```
> z <- as.logical(c(T,T,F))
> z
[1] TRUE TRUE FALSE
> str(z)
logi [1:3] TRUE TRUE FALSE
> sum(z)
[1] 2
>
```

Note: When you calculate the sum of a logical vector, logical true values are regarded as one, false values as zero.

```
# Does y have any elements bigger than x?
> sum(y > x)
[1] 4
>
```

In R, "vectors" of categorical values are called factors.

```
examples <- read.table("wsd.development.csv", header=T)
> str(examples$SENSE)
Factor w/ 6 levels "cord","division",..: 1 1 1 1 1 1 1 1 ...
> levels(examples$SENSE)
[1] "cord" "division" "formation" "phone" "product"
    "text"
>
```

A factor stores both values and possible levels of a categorial variable. Levels are "names" of categorial values.

Examples: creating factors

```
> word.forms <-
as.factor(c("lines", "line", "line", "line", "lines", "lines"))
> str(word.forms)
Factor w/ 2 levels "line", "lines": 2 1 1 1 2 2
> table(word.forms)
word.forms
line lines
    3
          3
> people <- factor( c(1,1,1,0,1,0,0,0,1,0,1,1,1,1),</pre>
                     labels=c("male", "female"))
> table(people)
people
 male female
     5
            9
```

Looking at data in a data frame - head()

>	<pre>examples <- read.table("wsd.development.csv", header=T)</pre>																
> head(examples)																	
	SENSE	A1	A2	AЗ	A 4	Α5	A6	A7	A 8	Α9	A10	A11	A12	A13	A14	A1	A
1	cord	. 1	0	0	0	0	0	0	0	0	0	0	safety	special	install	insid	
2	cord	. 0	0	0	0	0	0	0	0	0	0	0	wash	a	and		
3	cord	. 0	0	0	0	0	0	0	0	0	0	0	moor	steel	by		V
4	cord	. 0	0	0	0	0	0	0	0	0	0	0	frozen	the	thaw	a	
5	cord	. 0	0	0	0	0	0	0	0	0	0	0	dock	a	throw	t	
6	cord	. 0	0	0	0	0	0	0	0	0	0	0	green	the	come	a	}
	A17 A	18	A	19		A2	20										
1	l IN DT lines dobj																
2	2 . X line conj_and																
3	3 , DT lines agent																
4 IN DT lines dobj																	
5	TO	DT	li	ne		dol	oj										
6	IN	DT	li	ne	1	ısul	oj										
>																	

Looking at data in a data frame - table()

	> str(examp	> str(examples\$SENSE)										
l	Factor w/ 6 levels "cord", "division",: 1 1 1 1 1 1 1 1											
ĺ	> table(examples\$SENSE)											
	cord	division	formation	phone	product	text						
	336	322	296	380	1838	352						

Looking at data in a data frame - table()

	> str(examp	les\$SENSE)								
	Factor w/	6 levels "co	ord","divisio	on",: 1	1 1 1 1 1	1 1				
ĺ	> table(examples\$SENSE)									
ĺ	cord	division	formation	phone	product	text				
	336	322	296	380	1838	352				

2-dimensional table()

<pre>> table(examples\$SENSE, examples\$A19)</pre>									
	line	lined	lines						
cord	226	0	110						
division	250	0	72						
formation	189	2	105						
phone	201	0	179						
product	1319	0	519						
text	207	0	145						

Mathematicians call it contingency table (first used by K. Pearson, 1904).

Getting probability of factor levels using table()

> table(examples\$SENSE)/sum(table(examples\$SENSE))

 cord
 division
 formation
 phone
 product
 text

 0.09534620
 0.09137344
 0.08399546
 0.10783201
 0.52156640
 0.09988649

Getting probability of factor levels using table()

> table(examples\$SENSE)/sum(table(examples\$SENSE))

 cord
 division
 formation
 phone
 product
 text

 0.09534620
 0.09137344
 0.08399546
 0.10783201
 0.52156640
 0.09988649

The same using nrow(), and with rounded numbers

>	<pre>> round(table(examples\$SENSE)/nrow(examples), 3)</pre>										
	cord	division t	formation	phone	product	text					
	0.095	0.091	0.084	0.108	0.522	0.100					

Getting a subset of observations

```
> examples.only_lines <- subset(examples, A19=='lines')
> str(examples.only_lines)
'data.frame': 1130 obs. of 21 variables:
$ SENSE: Factor w/ 6 levels "cord","division",..: 1 1 1 1 1 1 1 1 ...
$ A1 : int 1 0 0 0 1 1 0 0 0 0 ...
$ A2 : int 0 0 0 0 0 0 0 0 0 ...
$ A3 : int 0 0 0 0 0 0 0 0 0 ...
>
```

Getting a subset of observations

```
> examples.only_lines <- subset(examples, A19=='lines')
> str(examples.only_lines)
'data.frame': 1130 obs. of 21 variables:
$ SENSE: Factor w/ 6 levels "cord","division",..: 1 1 1 1 1 1 1 1 ...
$ A1 : int 1 0 0 0 1 1 0 0 0 0 ...
$ A2 : int 0 0 0 0 0 0 0 0 0 ...
$ A3 : int 0 0 0 0 0 0 0 0 0 ...
>
```

Getting selected variables only

```
> examples[1:20, c('SENSE', 'A4', 'A19')]
>
```

- Will retrieve first 20 observations and select only the 3 given variables.

Machine learning requires some mathematical knowledge, especially

- statistics
- probability theory
- information theory
- algebra (vector spaces)

Motivation

- In machine learning, models come from data and provide insights for understanding data or making prediction.
- A good model is often a model which not only fits the data but gives good predictions, even if it is not interpretable.

Statistics

- is the science of the collection, organization, and interpretation of data
- uses the probability theory

Statistics is the study of the collection, organization, analysis, and interpretation of data. It deals with all aspects of this, including the planning of data collection in terms of the design of surveys and experiments.

Description

describing what was observed in sample data numerically or graphically

Inference

• drawing inferences about the **population represented by the sample data**

ESSLLI '2013

A **random variable** (or sometimes stochastic variable) is, roughly speaking, a variable whose value results from a measurement/observation on some type of random process. Intuitively, a random variable is a numerical or categorical description of the outcome of a random experiment (or a random event).

Random variables can be classified as either

discrete

= a random variable that may assume either a finite number of values or an infinite sequence of values (countably infinite)

• continuous

= a variable that may assume any numerical value in an interval or collection of intervals.

In machine learning theory we take features as random variables.

Target class is a random variable as well.

Data instance is considered as a vector of random values.

Formal definitions

- random experiment
- elementary outcomes ω_i
- sample space $\Omega = \bigcup \{\omega_i\}$
- event $A \subseteq \Omega$
- complement of an event $A^c = \Omega \setminus A$
- probability of any event is a non-negative value $P(A) \ge 0$
- total probability of all elementary outcomes is one

$$\sum_{\omega \in \Omega} \mathsf{P}(\omega) = 1$$

• if two events A, B are mutually exclusive (i.e. $A \cap B = \emptyset$), then $P(A \cup B) = P(A) + P(B)$

Basic formulas to calculate probabilities

Generally, probability of an event A is

$$\mathsf{P}(A) = \sum_{\omega \in A} \mathsf{P}(\omega)$$

Probability of a complement event is

$$\mathsf{P}(\mathsf{A}^c) = 1 - \mathsf{P}(\mathsf{A})$$

IF all elementary outcomes have the same probability, THEN probability of an event is given by the proportion of

number of desired outcomes

total number of outcomes possible

$$\mathsf{P}(A \text{ or } B) = \mathsf{P}(A \cup B)$$

For *mutually exclusive* events:

$$\mathsf{P}(A \text{ or } B) = \mathsf{P}(A) + \mathsf{P}(B)$$

otherwise (generally):

$$\mathsf{P}(A \text{ or } B) = \mathsf{P}(A) + \mathsf{P}(B) - \mathsf{P}(A \cap B)$$

What is P(A and B)?

$$P(A, B) = P(A \text{ and } B) = P(A \cap B)$$

If events A and B come from two different random processes, P(A, B) is called joint probability.

Two events A and B are independent of each other if the occurrence of one has no influence on the probability of the other.

For independent events: $P(A \text{ and } B) = P(A) \cdot P(B)$.

otherwise (generally):

$$\mathsf{P}(A \text{ and } B) = \mathsf{P}(A | B) \cdot \mathsf{P}(B) = \mathsf{P}(B | A) \cdot \mathsf{P}(A)$$

If you want to make sure that you understand well basic probability computing

Rolling two dice, observing the sum. What is likelier?

- a) the sum is even
- **b)** the sum is greater than 8
- c) the sum is 5 or 7

What is likelier:

- a) rolling at least one six in four throws of a single die, OR
- b) rolling at least one double six in 24 throws of a pair of dice?

Conditional probability of the event A given the event B is

$$\mathsf{P}(A \mid B) = \frac{\mathsf{P}(A \cap B)}{\mathsf{P}(B)} = \frac{\mathsf{P}(A, B)}{\mathsf{P}(B)}$$

Or, in other words,

$$\mathsf{P}(A,B)=\mathsf{P}(A\,|\,B)\mathsf{P}(B)$$

Definition: The random event *B* is *independent* of the random event *A*, if the following holds true at the same time:

$$\mathsf{P}(B) = \mathsf{P}(B \mid A), \quad \mathsf{P}(B) = \mathsf{P}(B \mid A^c).$$

An equivalent definition is that B is independent of A if

$$\mathsf{P}(A) \cdot \mathsf{P}(B) = \mathsf{P}(A \cap B).$$

Exercise

The probability that it is Friday and that a student is absent is 3%. Since there are 5 school days in a week, the probability that it is Friday is 20%.

What is the probability that a student is absent given that today is Friday?

Solution

Random experiment:

At a random moment we observe the day in working week and the fact if a student is absent.

Events:

- A ... it is Friday
- B . . . a student is absent

Probabilities:

- P(A, B) = 0.03
- P(A) = 0.2
- P(B|A) = P(A, B)/P(A) = 0.15

Correct answer: The probability that a student is absent given that today is Friday is 15%.

ESSLLI '2013

Hladká & Holub

Look at the wsd.development data. There are 3524 examples in total. Each example can be considered as a random observation, i.e. as an outcome of a random experiment.

Occurrence of a particular value of the target class can be taken as an **event**, similarly for other attributes.

Assume that

- event A stands for SENSE = 'PRODUCT'
- event B stands for A19 = 'lines'

Then **unconditioned probabilities** Pr(A) and Pr(B) are

$$\Pr(A) = \frac{\text{number of observations with SENSE='PRODUCT'}}{\text{number of all observations}} = \frac{1838}{3524} = 52.16\%$$

$$\Pr(B) = \frac{\text{number of observations with A19='lines'}}{\text{number of all observations}} = \frac{1130}{3524} = 32.07\%$$

ESSLLI '2013

Hladká & Holub

Example – conditional probability of target class

To compute conditional probability Pr(A | B) you need to know joint **probability** Pr(A, B)

 $\Pr(A, B) = \frac{\text{number of observations with SENSE='PRODUCT' and A19='lines'}}{\text{number of all observations}}$ $\Pr(A, B) = \frac{519}{3524} = 14.73\%$ $\Pr(A \mid B) = \frac{\Pr(A, B)}{\Pr(B)} = \frac{14.73\%}{32.07\%} = 45.93\%$ Or, equivalently $\Pr(A \mid B) = \frac{\text{number of observations with SENSE='PRODUCT' and A19='lines'}}{\text{number of observations with A19='lines'}}$

$$\Pr(A \mid B) = \frac{519}{1130} = 45.93\%$$

ESSLLI '2013

Because of the symmetry P(A, B) = P(B, A), we have

$$\mathsf{P}(A,B) = \mathsf{P}(A \mid B)\mathsf{P}(B) = \mathsf{P}(B \mid A)\mathsf{P}(A) = \mathsf{P}(B,A)$$

And thus

$$\mathsf{P}(B \mid A) = \frac{\mathsf{P}(A \mid B)\mathsf{P}(B)}{\mathsf{P}(A)}$$

Exercise

One coin in a collection of 65 has two heads. The rest are fair.

If a coin, chosen at random from the lot and then tossed, turns up heads 6 times in a row, what is the probability that it is the two-headed coin?

Solution

Random experiment and considered events

We observe if a chosen coin is two-headed (event A), and if all 6 random tosses result in heads (event B). So, we want to know P(A | B).

Probabilities

- P(A | B) is the probability that we are looking for = P(B | A)P(A)/P(B) (application of Bayes rule)
- P(B|A) = 1 (two-headed coin cannot give any other result)

- $P(B) = P(B, A) + P(B, A^c)$ (two mutually exclusive events) = $P(A)P(B|A) + P(A^c)P(B|A^c)$ (by definition)
- $P(B | A^c) = 1/2^6 = 1/64$ (six independent events)

• P(A | B) = (1/65)/(2/65) = 50% (= the correct answer)

1 Practise using R!

Go thoroughly through all examples in our presentation and try it on your own

- using your computer, your hands, and your brain :-)

2 Study the Homework 1.1 Solution.

Understand it. Especially the conditional probability computing.

Machine learning process - five basic steps

- **1** Formulating the task
- 2 Getting classified data, i.e. training and test data
- **3** Learning from training data: **Decision tree learning**
- **4** Testing the learned knowledge on test data
- **5** Evaluation

Decision tree for the task of WDS of line

Example

Example

Assign the correct sense of line in the sentence "Draw a line between the points P and Q."

First, get twenty feature values from the sentence

A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8	A_9	A ₁₀	A ₁₁
0	0	0	0	0	0	0	0	1	0	0

A_{12}	A ₁₃	A_{14}	A_{15}	A ₁₆	A ₁₇	A ₁₈	A_{19}	A ₂₀
а	draw	Х	between	DT	IN	DT	line	dobj

Using the decision tree for classification

Second, get the classification of the instance using the decision tree

Example

Assign the correct sense of line in the sentence "Draw a line that passes through the points P and Q."

First, get twenty feature values from the sentence

A_1	A ₂	A ₃	A ₄	A ₅	A ₆	A ₇	A_8	A ₉	A ₁₀	A ₁₁
0	0	0	0	0	0	0	0	0	0	0

A_{12}	A ₁₃	A ₁₄	A_{15}	A ₁₆	A ₁₇	A ₁₈	A ₁₉	A ₂₀
а	draw	Х	that	DT	WDT	VB	line	dobj

Using the decision tree for classification

Second, get the classification of the instance using the decision tree

Building a decision tree from training data

Tree structure description

- Nodes
 - Root node
 - Internal nodes
 - Leaf nodes with TARGET CLASS VALUES
- Decisions
 - Binary questions on a single feature, i.e. each internal node has two child nodes

Building a decision tree from training data

Start building a decision tree

• Step 1 Create a root node.

How to select decision d?

Associate the root node with the training set *t*.

Example

- 1. Assume decision if $A_4 = TRUE$.
- Split the training set t according to this decision into two subsets – "pink" and "blue".

	SENSE	 A4	
	FORMATION	TRUE	
	FORMATION	FALSE	
t	PHONE	TRUE	
	CORD	TRUE	
	DIVISION	FALSE	

Building a decision tree from training data

 Add two child nodes, "pink" and "blue", to the root. Associate each of them with the corresponding subset t_L, t_R, resp.

	SENSE	 A4	
	FORMATION	TRUE	
tL	CORD	TRUE	
	PHONE	TRUE	

	SENSE	 A4	
tp	FORMATION	FALSE	
۲R	DIVISION	FALSE	

How to select decision d?

Working with more than one feature, more than one decision can be formulated.

Which decision is the best?

Focus on a distribution of target class values in associated subsets of training examples.

Example

- Assume a set of 120 training examples from the task of WSD.
- Some decision splits them into two sets (1) and (2) with the following target class value distribution:

	CORD	DIVISION	FORMATION	PHONE	PRODUCT	TEXT	
(1)	0	0	0	120	0	0	"pure"
(2)	20	20	20	20	20	20	"impure"

A "pure" training subset contains mostly examples of a single target class value.

Which decision is the best?

Decision that splits training data into subsets as pure as possible.

Building a decision tree from training data

Decision tree learning algorithm – a very basic formulation

• Step 1 Create a root node.

• **Step 2** Select decision *d* and add two child nodes to an existing node.

- **Step 3** Split the training examples associated with the parent node *t* according to *d* into *t_L* and *t_R*.
- **Step 4** Repeat recursively steps (2) and (3) for both child nodes and their associated training subsets.
- **Step 5** Stop recursion for a node if all associated training examples have the same target class value. Create a leaf node with this value.

Hladká & Holub

Task

Assign the correct sense to the target word "line" ("lines", "lined")

Objects

Sentences containing the target word ("line", "lines", "lined")

Target class

SENSE = {CORD, DIVISION, FORMATION, PHONE, PRODUCT, TEXT}

Features

Binary features $A_1, A_2, ..., A_{11}$

Block 2.4 Decision tree learning – Practice

Subtasks

- 1 Build a classifier trained on binary feature A4.
- 2 Build a classifier trained on eleven binary features A1, A2, ..., A11.

Getting classified data

First, get examples into R

```
## Read the file with examples
> examples <- read.table("wsd.development.csv", header=T)</pre>
## Review the data
> str(examples)
'data.frame': 3524 obs. of 21 variables:
 $ SENSE: Factor w/ 6 levels "cord", "division", ...: 1 1 1 1 ...
 $ A1 : logi TRUE FALSE FALSE FALSE FALSE FALSE ...
 $ A2 : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
 $ A8
        : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
 $ A12 : Factor w/ 920 levels ".",",","''',"-",..: 667 862 512
. . .
 $ A19 : Factor w/ 3 levels "line","lined",..: 3 1 3 3 1 ...
 $ A20 : Factor w/ 80 levels "advcl", "agent", ...: 12 6 2 12 ...
```

ESSLLI '2013

Second, split them into the training and test sets

```
## Get the number of input examples
> num.examples <- nrow(examples)</pre>
```

```
## Set the number of training examples = 90% of examples
> num.train <- round(0.9 * num.examples)</pre>
```

```
## Set the number of test examples = 10% of examples
> num.test <- num.examples - num.train</pre>
```

```
## Check the numbers
> num.examples
[1] 3524
> num.train
[1] 3172
> num.test
[1] 352
```

Randomly split examples into training and test data
Use set.seed() to be able to reconstruct the experiment
with the SAME training and test sets

```
> sample(10)
 [1] 8 7 10 3 1 4 2 6 5 9
> sample(10)
 [1] 9 8 5 10 7 6 3 2 4 1
> sample(10)
 [1] 7 4 6 10 1 9 5 2 3 8
> sample(10)
 [1] 9 10 4 5 1 6 8 2 3 7
> set.seed(123)
> sample(10)
 [1] 3 8 4 7 6 1 10 9 2 5
> set.seed(123)
> sample(10)
 [1]
                       9 2
   3 8 4 7 6 1 10
                            5
```

Randomly split examples into training and test data

Use set.seed() to be able to reconstruct the experiment ## with the SAME training and test sets

```
> set.seed(123)
> s <- sample(num.examples)
```

s	
---	--

```
### Get the training set
## First, generate indices of training examples ("blue" ones)
> indices.train <- s[1:num.train]
## Second, get the training examples
> train <- examples[indices.train,]</p>
### Get the test set (see "pink" indeces)
> indices.test <- s[(num.train+1):num.examples]</pre>
> test <- examples[indices.test,]</pre>
## Check the results
> str(train); str(test)
```

Load the package rpart

```
## Use the "rpart" package
## Use the "rpart" packages("rpart"), ***if not installed***.
# Check if the package is installed
> library()
## Load the package
> library(rpart)
# to get help info
> help(rpart)
```

Train decision tree model M1

Run the learning process using function "rpart"
M1 <- rpart(SENSE ~ A4, data=train, method="class")</pre>

rpart documentation

```
rpart(formula, data= , method= , ... )
```

- formula is y \sim model where
 - y is a target class
 - \sim stands for 'is modeled as'
 - model is a combination of features (model by statisticians).
- data specifies the training set,
- method="class" for classification,

Display the trained tree

WSD task: decision tree trained on feature A4

Display the model M1

How to read the model

n= 3172
<pre>node), split, n, loss, yval, (yprob)</pre>

- n=3172 The number of training examples.
- node) A node number.
- **split** Decision.
- n The number of training examples associated to the given node.
- **loss** The number of examples incorrectly classified with the majority class value yval.
- yval The default classification for the node by the majority class value.
- yprob The distribution of class values at the associated training subset.

Prediction on test data

```
### Test the trained model M1 on test examples
## Use the function predict()
> ?predict()
predict
             package:stats R Documentation
Model Predictions
Description:
     'predict' is a generic function for predictions
     the results of various model
 P11 <- predict(M1, test, type="class")</pre>
```

Evaluation

Comparing the predicted values with the true senses

> str(P11)									
Factor w/ 6	3 leve	els "cord'	',"division	ı",:	5555	555	58	55	
> str(test\$	SENSE)								
Factor w/ 6	3 leve	els "cord'	',"division	ı" , :	1555	565	26	6	
> print(tab]	le(tes	t\$SENSE,	P11))						
1	P11								
	cord	division	formation	phone	product	text			
cord	0	0	0	0	33	0			
division	0	0	0	0	28	0			
formation	0	0	0	0	28	0			
phone	0	0	0	12	21	0			
product	0	0	0	0	192	0			
text	0	0	0	1	37	0			

57.95% of test examples are predicted correctly

>	<pre>round(100*sum(P11</pre>	== test\$SENSE)/num.test,2)	
[[1] 57.95		
ES	SLLI '2013	Hladká & Holub	Day 2, page 64/78

Prediction on training data

Test the trained model M1 on training examples.

> P12 <- predict(M1, train, type="class")</pre>

Evaluation

Comparing the predicted values with the true senses

> print(table(train\$SENSE, P12))							
I	P12						
	cord	division	formation	phone	product	text	
cord	0	0	0	0	303	0	
division	0	0	0	0	294	0	
formation	0	0	0	0	268	0	
phone	0	0	0	142	205	0	
product	0	0	0	0	1646	0	
text	0	0	0	8	306	0	

56.37 % of training examples are predicted correctly

> message(round(100*sum(P12 == train\$SENSE)/num.train, 2), "%")
[1] 56.37

ESSLLI '2013

Train decision tree model M2

Display the trained tree

WSD task: decision tree trained on A1,...,A11

Trained decision tree

Display the trained model M2

```
> ## Display the model
> M2
n= 3172
node), split, n, loss, yval, (yprob)
      * denotes terminal node
 1) root 3172 1526 product (0.096 0.093 0.084 0.11 0.52 0.099)
  2) A4>=0.5 150 8 phone (0 0 0 0.95 0 0.053) *
  3) A4< 0.5 3022 1376 product (0.1 0.097 0.089 0.068 0.54 0.1)
    6) A2>=0.5 88 0 division (0 1 0 0 0 0) *
    7) A2< 0.5 2934 1288 product (0.1 0.07 0.091 0.07 0.56 0.1)
     14) A3>=0.5 79 5 formation (0.063 0 0.94 0 0 0) *
     15) A3< 0.5 2855 1209 product (0.1 0.072 0.068 ...)
       30) A9>=0.5 66 3 division (0.015 0.95 0 ...) *
       31) A9< 0.5 2789 1144 product (0.11 0.051 0.07 ...) *
```

Prediction on test data

Test the trained model on test examples.

> P21 <- predict(M2, test, type="class")</pre>

Comparing the predicted values with the true senses

<pre>> print(table(test\$SENSE, P21)) </pre>							
P2:	P21						
	cord	division	formation	phone	product	text	
cord	0	0	0	0	33	0	
division	0	15	0	0	13	0	
formation	0	0	6	0	22	0	
phone	0	0	0	12	21	0	
product	0	1	0	0	191	0	
text	0	0	1	1	36	0	
>							

63.64 % of test examples are predicted correctly

```
> round(100*sum(P21 == test$SENSE)/num.test,2)
[1] 63.64
```

Prediction on training data

Test the trained model on training examples.

> P22 <- predict(M2, train, type="class")</pre>

Comparing the predicted values with the true senses

<pre>> print(table(train\$SENSE, P22))</pre>							
	cord	division	formation	phone	product	text	
cord	0	1	5	0	297	0	
division	0	151	0	0	143	0	
formation	0	0	74	0	194	0	
phone	0	1	0	142	204	0	
product	0	1	0	0	1645	0	
text	0	0	0	8	306	0	
>							

63.43% of training examples are predicted correctly

> round(100*sum(P22 == train\$SENSE)/num.train,2)
[1] 63.64

ESSLLI '2013

The R script DT-WSD.R

- builds the classifier M1 using the feature A4, classifies training and test data using M1 and computes the performance of M1.
- builds the classifier M2 using binary features $A_1, ..., A_{11}$, classifies training and test data using M2 and computes the performance of M2.

Download the script from the course page and run in R

```
> source("DT-WSD.R")
>
```

Generate the same training and test sets as we did in practice above. Assume the following feature groups:

$$1 A_2, A_3, A_4, A_9$$

$$\mathbf{2} A_1, A_6, A_7$$

 $\mathbf{3} A_1, A_{11}$

For each of them, build a decision tree classifier and list its percentage of correctly classified training and test examples.

Theory

- Decision tree structure: nodes, decisions
- A basic formulation of decision tree learning algorithm

Practice

We built two decision tree classifiers (M1, M2) on two different sets of features and we tested them on both training and test sets.

features used	trained model	data set	performance	
A_4	M1			
		train	57.37	
		test	57.95	
A ₁ ,, A ₁₁	M2			
		train	63.43	
		test	63.64	

!!! You know how to build a decision tree classifier from training examples in R. Performance is not important right now. **!!!**

ESSLLI '2013